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Abstract

There is a pressing need to re-design the defined contribution pension scheme so that
it can become an adequate replacement for the failing defined benefit scheme. This pa-
per focuses on the importance of accounting for systematic longevity risk in light of this
assertion. We discuss a proposed, plan member oriented, pension plan design that aims
to deliver a desired standard of living in retirement through the use of the replacement
ratio in the objective function of the optimal portfolio choice problem. We introduce
an analytically tractable stochastic mortality model in order to facilitate working within
a continuous-time dynamic programming framework. In order to gauge the impact of
longevity risk we introduce, into the asset mix of the portfolio choice problem, a syn-
thetic longevity-linked security. We determine the relative demand for this asset, and
the value added through the introduction of this asset in terms of a utility gain. We
find that for sufficiently risk averse plan members the value added by way of a reduction
in conditional volatility is substantial, however these effects can be drowned out if the
proportion of pension fund wealth allocated to risky assets is large.
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1 Introduction

The high profile closure of many defined benefit (DB) pension schemes around the world
has shed a spotlight on the numerable risks associated with pension funding. The closure
of these schemes did nothing to mitigate these risks, but merely transferred them from the
plan sponsor to the plan member, by accelerating the shift away from DB plans towards
defined contribution (DC) plans. However, not only are the underlying risks essentially
the same, the ultimate goal of both types of plan is, or at least should be, the same. This
similarity is far from evident from the relative structure of the two types of plan. DB
schemes were designed specifically for the purpose of providing a retirement income; and
what’s more, a retirement income that is directly related to the pre-retirement income
level of the retiree so as to ensure that his or her standard of living is upheld. With a DC
scheme it is largely left to the employee to figure out how much pension fund wealth he
or she will need at retirement in order to provide a desired standard of living, and then
principally determine the appropriate investment strategy required to deliver this fund.

Furthermore, with respect to the pension fund performance, with a DB plan the value
of the pension fund assets is always expressed in terms of its liabilities. If the ratio of
assets to liabilities exceeds one the fund is in surplus and if this ratio is less than one
the fund is in deficit. Whether the fund is in surplus or deficit largely determines both
the investment policy and contribution requirements. It appears that as DB schemes are
dying out so too is this intuitive and reasoned approach to pension funding. By virtue
of its reliance on the individual’s own ability and resources the DC scheme does not
facilitate an approach of this kind.

We propose that the DC plan should be designed so as to maintain the intuitive
language of the DB scheme, without stipulating a transfer of funding risk back to the
plan sponsor. The proposed design is based on an optimal dynamic asset allocation
strategy so as to remove the burden of strategic decision making from the shoulders of
the plan member. We measure the pension wealth in terms of the replacement ratio; that
is, the ratio of retirement income to pre-retirement income, thereby giving each individual
plan member a clearer understanding of the type of pension he or she is likely to receive.
The asset allocation strategy is determined as that which maximises the expected value
of this ratio. The expected replacement ratio acts as an implicit funding ratio, with the
desired retirement income the implicit fund liability.

If we are to measure DC pension fund assets in terms of the fund’s implicit liability,
it is imperative that the uncertainty associated with this implicit liability is properly
understood and accounted for. It was the failure to accurately account for the uncertainty
associated with scheme liabilities that led to the current crisis in DB funding. There are
three principal risk factors driving this uncertainty — interest rate risk, longevity risk
and labour income risk. We focus in this paper on longevity risk, which, until recently,
has been largely ignored by those considering optimal pension fund asset allocation, both
in practice, and in the academic literature.

By longevity risk we are referring to the risk that a population of interest will live
longer on average than expected. In this discussion the relevant population is the pool
of annuitants on the annuity book of the life company underwriting the annuity contract
used to define the replacement ratio. This type of longevity risk is what is referred to
as systematic longevity risk, as opposed to idiosyncratic longevity risk, which is the risk
that a given individual will live longer than he or she is expected to live given current
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expectations of future survival probabilities. Systematic longevity risk is essentially the
risk that these expectations will change over time. Increasing life expectancies drive up
the cost of annuities and hence pension fund liabilities, be they explicit (DB) or implicit
(DC).

It is necessary, whenever attempting to account for longevity risk, to first identify a
model that captures the time-varying dynamics of mortality rates. We derive a contin-
uous time, affine mortality model, based on a mortality improvements following a Cox-
Ingersoll-Ross process. By specifying the initial mortality intensity curve as a Gompertz
law it is possible to derive an explicit functional form for the survival probabilities. The
mathematical tractability of this model greatly facilitates working within the stochastic
dynamic programming framework of the asset allocation model. The simulation of the
processes governing the dynamics of the value function, and asset allocation strategies,
is, as a result, much more efficient.

There are currently no efficient means by which to hedge longevity risk, although there
is a market for longevity linked securities beginning to emerge, and an increased focus on
the design and valuation of such securities. In order to gauge the impact of longevity risk
we introduce, into the asset mix of the portfolio choice problem, a synthetic longevity-
linked security, based on the structure of a longevity bond i.e. a bond with a principal
repayment proportional to the mortality rate. We determine the relative demand for this
asset, and the value added through the introduction of this asset in terms of a utility
gain. We find that for sufficiently risk averse plan members the value added by way of
a reduction in conditional volatility is substantial, however these effects can be drowned
out if the proportion of pension fund wealth allocated to risky assets is large. We also
express the value of the longevity hedge, in nominal terms, as the increase in contribution
rate required to ensure that the probability of falling below some minimal permissible
replacement ratio is the same in both the complete and incomplete markets.

The remainder of this paper is organised as follows: Section 2 discusses the need to
rethink the current design of DC pension plans in light of the failures of the traditional
DB plan. Section 3 focuses on the issues associated with developing the type of robust
asset allocation strategy required for the proposed DC plan design. Section 4 introduces
the continuous-time stochastic mortality model and provides the closed form solution for
the survival probability (the derivation of which is presented in the appendix). Section 5
derives the optimal asset allocation strategies in the presence of longevity risk, governed
by stochastic mortality model introduced in section 4. It also includes a simulation
analysis that highlights the effect of the longevity risk through examining the demand for
the longevity-linked asset, and corresponding utility gains and contribution rate effects.
Section 6 concludes.
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2 Redesigning the DC Plan

2.1 Problems with the traditional DC design

Broadly speaking there are two factors that determine the size of an individual’s accu-
mulated pension fund at the time of retirement — the amount of fund contributions, and
the investment return. The defining feature of a DC plan is that the contribution rate is
known in advance. The name ‘defined contribution’ however is principally derived from
the fact that it is the employer’s contribution that is known in advance. This in contrast
to a DB plan in which the employer often needs to increase his/her/its contribution rate
to counteract low investment returns or increases in plan liabilities. There are generally
few restrictions DC plan members increasing their contributions, up to a point; such
restrictions would unnecessarily discourage retirement saving.

There is a danger that DC plans could be mis-sold to the employees of a company
on the basis that they “cost” less than a corresponding DB plan. This danger is made
more apparent once we consider that individuals tend to exhibit a present bias in their
time preferences (Benzoin et al., 1989, Laibson, 1997); that is, individuals tend to dis-
proportionately value present consumption over future consumption. It is unlikely that
a given plan member would willingly increase his or her contribution rate beyond a level
which they perceive as absolutely necessary to obtain their desired standard of living in
retirement. In light of this we argue that the primary objective of any DC plan design
should be to frame the retirement saving problem in terms that make it explicit to the
plan member what precisely is required of him or her in order to best obtain a particular
standard of living in retirement.

The DC plan as currently designed implicitly requires that the plan member deter-
mine the investment strategy that will best deliver the desired standard of living. This is
a highly complex optimisation problem that must account for an immense degree of un-
certainty. The typical DC plan member could not hope to identify an optimal investment
strategy in this environment. Huberman and Jiang (2006), in fact, identified a tendency
for DC plan members to adopt an investment strategy that allocates an equal proportion
of assets to each of the funds in which they are invested. Although this observation does
not necessarily imply that plan members are irrational in their choices it is highly unlikely
that such a naive approach would be investor optimal. The observation is made all the
more revealing if one considers that the plan members studied are those that are actively
involved in the management of their pension fund.

Cronquist and Thaler (2004), in studying the design of the partially privatised Swedish
state pension system; highlighted that (after the initial advertising campaign to encourage
citizens to take an active approach had subsided) in excess of 90% of new entries were
entirely invested in the default fund. These results are similar in principle to those of
Madrian and Shea (2001) who, in analysing the effect of auto-enrollment on participation
rates in 401(k) plans, showed that the increase in the number of employees participating in
the 401(k) plan as a result of auto-enrollment, brings with it a stark increase in the number
of employees using the default investment option. The implications of this observation are
growing increasingly important as auto-enrollment is becoming more and more popular
with employers and governments alike, as a means of increasing participation rates in
private pension arrangements.
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2.2 A plan member oriented design

Merton (2007) proposed that DC plans should be designed “based on questions that most
people find reasonable, such as the following: What standard of living do you desire to
have? What standard of living are you willing to accept? What contribution or savings
rate are you willing or able to make?” The principle behind this proposition is that
the pension plan is designed with an intrinsic optimal dynamic asset allocation strategy
that is sensitive to the answers to these questions. Given the answers to any two of these
three questions the third would be determined by the asset allocation model. Or similarly,
given the answer to any one of the three, the choices available for the other two would
be restricted to within some upper and lower bounds, again determined by the asset
allocation model. The plan member could vary the three determinants so as to find the
combination that is most attractive to him or her. The dynamic asset allocation model
is therefore the key component of this proposed plan design. Designing the plan based
on an optimal dynamic asset allocation model would go a long way towards addressing
the problems of disinterest and investor naivety among plan members discussed in the
previous section.

The investment strategy in such a design would not be the concern of the plan member;
it would be determined by the asset allocation model which would be developed and
monitored by industry experts. In addition, the default investment option could be set
so as to ensure an efficient accumulation of wealth that satisfies the retirement goals of
the typical plan member with high probability. Blake et al. (2009) discuss designing a
DC pension plan in this vein; that is with all technical complexity regarding investment
policy and risk management hidden from the plan member. Their emphasis is on the
importance of designing the plan with the express purpose of delivering a retirement
income as opposed to a lump sum nominal amount.

The concept of a replacement ratio is important when developing a dynamic asset al-
location model with this aim. The replacement ratio is the ratio of the level of retirement
income to the level of pre-retirement income. The replacement ratio is widely consid-
ered to be the most appropriate proxy measure for a standard of living in retirement, if
cost of living increases in retirement are factored in to the annuity payments, i.e. it is
assumed that the plan member’s income prior to retirement is sufficient to support the
plan member’s standard of living at that time. As the replacement ratio is measured
in terms of an income per year (or month, week etc.) not simply a nominal amount,
it is implicitly assumed that one can convert the accumulated wealth of their pension
fund into a stream of income payments. This of course can be accomplished through
the purchase of an annuity; or in the case of a DB plan, the purchase of an annuity can
perfectly hedge the pension liability.

With a robust optimal dynamic asset allocation model in place the implications of the
uncertainty associated with the state variables could be measured quantitatively in terms
of the effect that possible unexpected changes might have on the realised replacement
ratio. By generating a probability distribution for the replacement ratio, this information
could then be communicated to the plan member using readily understood downside risk
measures such as the fund’s value-at-risk (VaR) or expected shortfall. If the plan member
feels that the fund is overly risky he or she could choose to re-evaluate the desired re-
placement ratio and/or increase the contribution rate so as to facilitate a more risk-averse
investment approach. Revisions to this balance could then be made at time intervals that
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suit the plan member so as that he or she could take advantage of positive movements,
or correct for negative movements, in the underlying state variables. Considering the
time preference bias characterised by most it would, perhaps, be beneficial to stipulate
that the contribution rate cannot be reduced in the event of a positive movement and the
risk-exposure cannot be increased in the event of a negative movement in the underlying
variables. This would enable a general targeting of the specified desired replacement
ratio.

3 Dynamic Asset Allocation and Longevity Risk

3.1 Asset allocation and the replacement ratio

The DC plan design discussed in the previous section rests on the development of a
robust optimal asset allocation model. It was proposed that in developing such a model,
pension fund wealth should be measured in terms of the replacement ratio, so as to give
a more intuitive understanding of the type retirement the fund will support. Cairns et
al. (2006a) present a model based on this principle — the stochastic lifestyling model,
and this model forms the basis for the asset allocation model presented in section 5.

The optimal asset allocation strategy is derived within the dynamic programming
framework, pioneered by Merton (1969). The objective function used is the expected
value of the utility derived from the replacement ratio; that is, the fund wealth at re-
tirement as measured as a percentage of the fund wealth required to deliver a retirement
income equivalent to the pension plan member’s pre-retirement income. The use of the
replacement ratio in the objective function, in contrast to the nominal amount of the pen-
sion fund assets, introduces added uncertainty. The pre-retirement salary is unknown,
and so too is the price of the annuity at the retirement date; if the asset allocation model
were to be truly robust it is essential that this uncertainty be taken into account.

The incorporation of labour-income into the asset allocation problem is essential
regardless of the consideration of the replacement ratio since the pension plan mem-
ber’s labour-income is what drives the contributions to the fund. We consider the case
where labour markets are complete so that the associated risks can be fully hedged.
This is so that the model remains analytically tractable within the continuous time dy-
namic programming framework. There are a number of papers concerned with the life-
cycle portfolio choice problem with incomplete labour-income markets (see for example,
Polkovnichenko, 2007, Viceira, 2001), but in a discrete time environment so as to facili-
tate numerical simulation and estimation. Munk and Sorenson (2010) explore the effect
of stochastic labour-income in continuous time. They derive a closed form solution for
the optimal asset allocation when labour-income is instantaneously correlated with the
interest rate and asset prices. They also consider, however, the case where labour-income
is non-hedgeable, solving the Hamilton-Jocobi-Bellman equations numerically using a
backward induction technique. Our focus, however, is with the uncertainty associated
with the other factor determining the replacement ratio — the annuity rate at retirement.

The annuity rate at retirement depends on both the term structure of interest rates
(which determines the cost of each future payment) and the term structure of mortality
rates (which determines the expected number of future payments) at that time. Both
term structures are decidedly uncertain over long time horizons. The risk that mortality
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rates will change over time is, as mentioned, commonly referred to as systematic longevity
risk. The plan member’s exposure to longevity risk therefore enters the problem through
the annuity rate i.e. the plan member is exposed to the risk that mortality rates will
decrease unexpectedly over the life of plan driving up the cost of annuities, thereby
driving down the realised replacement ratio from its expected value. Cairns et al. (2006a)
do not account for systematic longevity in the development of the stochastic lifestyling
model. The survival probabilities used in their valuation of the annuity are assumed to be
deterministic, therefore the implicit mortality rates are also assumed to be deterministic.

3.2 The annuity decision

Implicit in the assumption that the replacement ratio is the perfect measure for pension
fund wealth is the assumption that the plan member wishes to fully annuitise his or her
wealth upon retirement. Yarri (1965) in his seminal work on the subject concluded that,
under given assumptions (including no bequest motive and the availability of actuarially
fair annuities), this action is indeed optimal. However, it is well observed that there are
much fewer people participating in annuity markets than would be expected given the
theoretical justifications for doing so. This observation has become known as the annuity
market participation puzzle, and has been discussed at length in the literature (see for
example, Davidoff et al., 2005, Inkmann et al., 2011).

Much of this literature attempts to explain the annuity market puzzle by considering
an environment that is less restrictive than that proposed by Yarri (1965), e.g. the
agent possesses a bequest motive, has access to equity markets in retirement, has greater
information with regard to his or her own life expectancy than the annuity provider etc.
This type of analysis is concerned with optimal consumption over the life-cycle, in the
traditions of economic theory. We, however, omit the consumption variable entirely from
our pension plan design problem; a decision that is largely attributable to behavioural
considerations.

Under our design, the contribution rate is determined exogenously to the portfolio
choice problem. It is unlikely that a pension plan that is designed based on a life-cycle
portfolio choice and consumption model would be popular by virtue of the fact that
the contribution rate would vary randomly over time. Regardless of any theoretical
justification that the model is ultimately to their favour, individuals are likely to yield to
their behavioural biases.

The particular behavioural bias presenting itself here is known in the literature as
mental accounting (see Thaler, R. H., 1990, Choi et al., 2009). Broadly speaking, this is
the tendency for individuals to disconnect financial decisions from one another; in this
case, the tendency for individuals to disconnect their retirement saving and investment
decisions from their consumption decisions. The assumption that individuals wish to
fully annuitise their pension fund wealth does not preclude a bequest motive for exam-
ple, but simply that the bequest is funded through means aside from the pension fund
contributions, perhaps even partly through the annuity payments themselves, which of
course could not be considered optimal within the traditional life-cycle problem.
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3.3 Hedging longevity risk over the life-cycle

Historically research in the area of longevity risk and its effects on life-cycle saving,
investment and consumption has focused primarily on idiosyncratic longevity risk; that
is, the risk that the individual in question will outlive his or her savings. This line of
research dates back to the seminal work of Yaari (1965) discussed in the previous section;
and later, to that of Richard (1975), who did not consider the annuity decision but
focused on the portfolio choice problem in the presence of a stochastic time of death.
More recently, many studies have focused on the combined problem of life-cycle asset
allocation and the hedging of idiosyncratic longevity risk.

The general approach taken by these studies is to incorporate illiquid annuities 1 as
an asset class; be they traditional fixed annuities (e.g. Milevsky et al., 2007, Horneff et
al., 2008) or investment linked variable annuities (e.g. Horneff et al., 2009, Koijen et al.,
2011). The results from these studies are largely consistent and suggest a gradual hedging
of longevity risk beginning many years prior to retirement and continuing into retirement.
We assume, however, that a full annuitisation decision is embedded in the design of the
DC pension plan, thereby fully hedging all exposure to idiosyncratic longevity risk.

Systematic longevity risk is relatively underexplored in the context of life-cycle asset
portfolio choice problems. However, as systematic longevity risk has become more of a
focus in the broader pension and insurance literature, and indeed, industry 2, we have
begun to see its consideration in the context of life-cycle portfolio choice emerge as a
subject of interest. Horneff et al. (2010) consider this issue in what is, in principle,
an expansion on the earlier work by Horneff et al. (2008). They allow the survival
probabilities to vary stochastically over time, and consider deferred annuities as opposed
to immediate annuities, which provide for a more efficient tool for hedging systematic
longevity risk.

Cocco and Gomes (2012) consider the life-cycle portfolio choice and consumption
problem in the presence of systematic longevity risk, but allow for the hedging of that
longevity risk through endogenous saving and retirement decisions. In addition, they
consider an asset mix that includes a synthetic liquid mortality-linked security designed
for the specific purpose of providing a longevity risk hedge. This is precisely the approach
we adopt in section 5. In the absence of the mortality-linked asset the authors show that
individuals would indeed seek to hedge against the longevity risk by saving more and
retiring later, but this comes at a significant cost to utility.

The introduction of the mortality-linked asset enables a far more efficient hedge and
thus reduces this cost tremendously. A paper with a similar focus to that of Cocco
and Gomes (2012), and one which takes an analytical approach more in line with our
analysis in section 5, is the earlier work of Menoncin (2008). He too introduced a synthetic
mortality-linked security, namely a longevity bond, into the asset mix of a portfolio choice
model, but in the absence of a consumption variable. The stochastic mortality model
considered, however, was limited in it’s capacity to capture true mortality dynamics, and
therefore too, in the potential for longevity risk analysis. Our analysis is based on a
stochastic mortality model far more in keeping with true mortality dynamics.

1Illiquid annuities in this context means that the annuity purchase is an irreversible transaction.
2The Life & Longevity Markets Association (LLMA), established to promote a liquid traded market

in longevity risk in 2010, now has as members: AVIVA, AXA, Deutsche Bank, J.P. Morgan, Legal &
General, Morgan Stanley, Munich Re, Pension Corporation, Prudential PLC, RBS and Swiss Re.
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4 The Stochastic Mortality Model

4.1 Mortality modelling

Large unexpected increases in life expectancy over the last 50 years or so contributed
greatly to the current crisis in DB funding levels. Since these increases were not factored
into the liability calculations liabilities were drastically underestimated. Plan sponsors
were, as a result, required to take action in order to decrease the mounting deficits.
Cocco and Gomes (2012) note that members of the Calpers benefits and programme
administration committee have cited changes to post-retirement mortality assumptions
as the most influential force driving increases in employer contributions. It is reasonable to
assume that these changes also, in part, drove the large increases in the equity exposure
observed over the last two decades, given that one cannot increase contribution rates
retrospectively.

These increases in the allocations to equities had dramatic effect in the wake of the
stock market crashes of 2000 and 2008. As discussed in section 2, the proposed design of
DC schemes closely relates to the design of traditional DB schemes; in that, the fund is
managed with the expressed aim of delivering a replacement ratio. It is imperative that
we recognise the faults with the traditional DB design so that we can correct for them
in any new DC design; the treatment of longevity risk clearly warrants attention in this
regard.

In order to give an accurate portrayal of these dangers it is essential that we identify
a mortality model that captures the characteristics of true mortality dynamics. There is
a vast literature focused on the forecasting of future mortality rates but, as studies such
as Currie et al. (2004) show, it is very difficult to do so with any accuracy. There are
many popular discrete time mortality models that can be shown to fit historical data well
and which are straightforward to simulate (e.g. Lee and Carter, 1992, Cairns, Blake and
Dowd, 2006b) but they do not lead to analytical formula for spot survival probabilities.

In the continuous time dynamic programming framework we require a continuous time
model that is analytically tractable. There is a class of mortality models that have come
to prominence recently for this very reason; they are the class of affine mortality models
(see for example, Schrager, 2006). This class of models is characterised by assumption
that the logarithm of the survival probability can be represented as an affine function of
the stochastic force of mortality. Dahl and Møller (2006) propose a particularly flexible
affine mortality model that allows the stochastic force of mortality to follow a time-
inhomogeneous Cox-Ingersoll-Ross (CIR) model. This model provides the framework for
our stochastic mortality model.

4.2 The model

We take as a starting point an initial curve for the mortality intensity, λ0(x), for an
individual aged x at time 0. Future mortality is then viewed as a stochastic process
λ(x, t)tε[0,T ], where λ(x, 0) = λ0(x).3 We model changes in the mortality intensity via a
stochastic mortality improvement process ζ(x, t), with ζ(x, 0) = 1 for all x . The mortal-
ity process is determined as the product of the deterministic component of the mortality

3In the asset allocation problem that is the focus of this paper, time 0 would be the time at which
the pension plan member joined the plan, and time T the time of retirement.
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intensity, determined by the initial mortality curve, and the mortality improvement pro-
cess, i.e. λ(x, t) = λ0(x+ t)ζ(x, t).

If the mortality improvement process is allowed to follow a CIR process,

dζ(x, t) =
(
θ − δζ(x, t)

)
dt+ σζ

√
ζ(x, t)dZζ(t) (1)

(assuming that 2θ(x, t) ≥ σζ(x, t)
2 so that the process remains strictly positive), it

is straightforward to show (by application of Itō’s lemma) that the mortality process
follows:

dλ(x, t) = (θλ(x, t)− δλ(x, t)λ(x, t))dt+ σλ(x, t)
√
λ(x, t)dZζ(t) (2)

where,

θλ(x, t) = θλ0(x+ t) ; δλ(x, t) = δ −
d
dt
λ0(x+ t)

λ0(x+ t)
; σλ(x, t) = σζ

√
λ0(x+ t) (3)

which is a time-inhomogeneous CIR process. Now, following Dahl and Møller (2006),
we define the survival probability F (x, t, T, ζ(t)); that is the probability at time t that an
individual aged x at time 0 will live to time T, by

F (x, t, T, ζ(t)) = E
[
e−

∫ T
t λ(x,τ)dτ | I(t)

]
(4)

where I(t) is the natural filtration of the process ζ(x, t). We also define the corresponding
martingale

M(t, T, ζ(t)) = E
[
e−

∫ T
0 λ(τ)dτ

∣∣∣I(t)
]

= e−
∫ t
0 λ0(τ)ζ(τ)dτF (t, T, ζ(t)) (5)

Applying Itō’s lemma to M(t, T, ζ(t)) we find that F (x, t, T, ζ(t)) satisfies a Black-
Scholes type PDE of the form

∂

∂t
F (x, t, T,ζ(t)) + (θλ(x, t)− δλ(x, t)λ)

∂

∂λ
F (x, t, T, ζ(t))

+
1

2
(σλ(x, t))

2 ∂
2

∂λ2
F (x, t, T, ζ(t))− λF (x, t, T, ζ(t)) = 0 (6)

Since λ(x, t) follows a time-inhomogeneous CIR process the solution to this PDE has
an exponential affine form; that is,

F (x, t, T, ζ(t)) = eα(x,t,T )−β(x,t,T )λ(x,t) (7)

It is straightforward to show that α(x, t, T ) and β(x, t, T ) must therefore satisfy

∂

∂t
β(x, t, T ) = δλ(x, t)β(x, t, T ) +

1

2
(σλ(x, t))

2β(x, t, T )2 − 1 (8)

∂

∂t
α(x, t, T ) = θλ(x, t)β(x, t, T ) (9)

with β(x, T, T ) = 0 and α(x, T, T ) = 0
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The choice of initial mortality curve λ0(x) is crucial, both with regard to ensuring
that the model accurately represents the real world mortality term structure, and in de-
termining whether analytic solutions to equations (8) and (9) can be found. A Gompertz
law

λ0(x) =
1

b(x)
e

1
b(x)

(x−m(x)) (10)

for, cohort dependent, constant parameters m(x) and b(x), as in Milevsky (2001),
succeeds on both counts.

Proposition 1. If we define the initial mortality λ0 as in (10), and allow the mortality
improvement process to follow a CIR process as in (1), then

β(x, t, T ) =
2b

z′(t)

[
I−ν+1(z

′(T ))Iν−1(z
′(t))− Iν−1(z′(T ))I−ν+1(z

′(t))

Iν−1(z′(T ))I−ν(z′(t))− I−ν+1(z′(T ))Iν(z′(t))

]
(11)

α(x, t, T ) = −θδ
σ2
ζ

(T − t) + ln

(
I−ν+1(z

′(T ))Iν(z
′(t))− Iν−1(z′(T ))I−ν(z

′(t))

I−ν+1(z′(T ))Iν(z′(T ))− Iν−1(z′(T ))I−ν(z′(T ))

) θδ

σ2
ζ

(12)

where

z′(t) = 2σζb
√
λ0(x+ t), and Iν(x) is the modified Bessel function of the first kind,

with ν = δb.

Proof. See Appendix A.

This closed form representation for the survival function, F (t, T, ζ(t)), allows for the
efficient estimation of survival probabilities and life expectancies, which in turn can be
used to value annuities and other mortality contingent claims. For the remainder of
the paper we will suppress the explicit x dependence as our portfolio analysis focuses
on one particular age cohort, with all parameter values estimated to correspond to that
particular cohort. What remains is to determine these appropriate parameter estimates.

4.3 Mortality dynamics under the model

4.3.1 Calibration

The calibration of any stochastic mortality model is always a contentious issue. The past
century has seen life-expectancies increase at an unprecedented rate 4 due to medical and
technological advances. Although there is little or no data available dating back beyond
the last century, considering that humans have been on the earth for tens of thousands
of years it is easy to argue that such a rate of increase is uncharacteristic of mortality
dynamics in general. However, the undoubted causal relationship between technological
advancement and life-expectancy presents a counter point to this argument, if one accepts

4Life expectancy at birth for males in the US increased from 58 to 76 in the years from 1933 to 2009
(figures from the Human Mortality Database).
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that the rate of technological advancement is set to continue. Then again, “technological
advancement” is such a broad term, and it could be argued that the observed relationship
with life-expectancy was driven by a relatively small number of monumental advances,
advances of the kind that are unlikely to be seen again. This type of back and forth is
typical of a broad debate focused on the forecasting of future mortality rates, and the
relative importance of recent mortality trends to this endeavour.

Despite this controversy however, there is some what of a consensus (albeit a tentative
one) in the stochastic mortality modeling literature when it comes to model calibration
(see for example Lee and Carter, 1992, Cairns, Blake and Dowd, 2006b); that is, to assume
that the mortality dynamics of the last half century or so are indicative of mortality
dynamics going forward. Since we are concerned with the effect that changing mortality
rates have on the value of an implicit pension fund liability, whether the mortality model
can predict the true mortality rates is secondary to whether the model can reflect the
expectations of the market for annuities (while being flexible enough to accommodate
any realised mortality improvements). The consensus approach is therefore the most
appropriate approach for our purposes.

For the calibration of the model introduced in the previous section, we use the death
rates of US males over the 40 year period (chosen to match the life of the pension fund
we consider in section 5) from 1969 to 2009 as a proxy for the force of mortality over this
time5. The model structure calls first for the calibration of the base mortality curve λo(t),
which was specified by the Gompertz law (10). It is well observed that the Gompertz
law fails to accurately model the true mortality rates for both very young and very old
individuals. Therefore in order for the law to hold on average, these rates must be
excluded from the calibration.

The calibration of the mortality improvement process is not as straight forward as
that of the base mortality curve. The principle reason for this, aside from the fact that the
structure itself is more complex, is that in modelling parallel shifts to the mortality curve
we are implicitly assuming that all shocks to mortality affect all age groups equally. This
does not reflect what has been observed to be the case in reality; that is, that mortality
rates decline faster in response to shocks for younger age groups (see for example, Lee
and Carter, 1992). As a result we can neither follow the time-varying dynamics of the
mortality rate for one specific age group (as this would disproportionately favour the
specific age group), nor can we follow that of the mortality rate for an individual over his
life-time (as this would induce additional volatility through the variation across the age
groups).

To circumvent this problem we take the change in area under the mortality curve (or
more accurately the estimated Gompertz curve) as a proxy measure for the parallel shift
to the curve.

Insert figure 1 here

Figure 1 shows the mortality improvements based on the individual age groups (blue
lines), an individual aged 25 at time 0 (red line), and the proxy measure just described
(green line). It is clear that the variance across the age groups is too severe to consider any
one group as representative of the whole, and the jaggedness of the line corresponding
to the individual, presents a degree of volatility not in keeping with the typical age

5Data obtained from the Human Mortality Database.
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grouping, as we would expect. The proxy measure however finds a balance between these
two extremes.

A further structural drawback of the model that should be taken into account before
calibration is that the CIR process governing the mortality improvement dynamics is
mean reverting. This implies that if mortality improvements over a given time inter-
val were faster than expected, the probability of further mortality improvements over
subsequent time intervals would be reduced; we would not typically expect this type of
behaviour. However, if we set θ = 1

2
σ2
ζ , i.e. the minimum permissible value, we can ensure

that the mean reversion effect is minimal.

Insert table 1 here

Table 1 shows the maximum likelihood parameter estimates for the CIR process sub-
ject to this constraint, along with the least-squares parameter estimates for the base
mortality curve.

4.3.2 Comparison with the Lee-Carter model

In order to show that our model is comparable in character to the types of models used in
practice we present here a direct comparison with the Lee-Carter model (Lee and Carter,
1992). The Lee-Carter model assumes that the mortality rates follow:

ln
(
λ(x, t)

)
= φ(x) + η(x)k(t) + εx,t (13)

where k(t) determines the general change to mortality over time, η(x) determines
to what relative degree the mortality rate for the age group x responds to this general
mortality change, φ(x) is average over time of the log of the mortality rates for the age
group x, and εx,t is an error term. Ordinary regression methods do not apply to the
Lee-Carter model as there are no given regressors. Singular Value Decomposition (SVD)
is instead the method of choice for parameter estimation. Lee and Carter (1992) outline
a close approximation to SVD, which suffices for our purposes here.

Typically, when forecasting using the Lee-Carter model, the time varying component
k(t) is set to follow a random-walk with drift. We therefore let k(t) be determined by

k(t) = µk + k(t− 1) + σkεt (14)

where µk is the drift term and εt is a standard normal random variable. Upon cali-
bration we find parameter estimates for µk and σk of -1.4305 and 2.899 respectively.

Insert figure 2 here

To show that our model is similar in character to the Lee-Carter model we have es-
timated survivor and longevity fan charts using both models. These charts can be seen
in figure 2, with those on the left estimated using our model, and those on the right esti-
mated using the Lee-Carter model. Survivor and longevity fan charts are two alternative
ways for representing graphically the uncertainty associated with future mortality rates.

The survivor fan chart in figure 2 (top) shows the probability that an man aged 65
will survive to any given age, for 1000 different simulated paths. The longevity fan chart
(bottom) shows how the life expectancy of men aged 65 evolves over a 40 year period,
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again for 1000 simulated paths. There is an important difference between these two charts
and that is that the survivor fan chart relates to just one age cohort (men aged 65 at
time 0), whereas the longevity fan chart considers multiple cohorts (40 to be exact; men
aged 65 at time 0, men aged 65 at time 1, etc.).

Our model implicitly assumes that mortality improvements are the same for all age
cohorts, as does the Lee-Carter model. It is known, though, that mortality dynamics differ
across different age cohorts and most recent mortality models do in fact include an age
cohort parameter (e.g. Cairns, Blake and Dowd, 2006b); however since we are concerned
primarily with defined contribution pension schemes which tailor to individuals, the age
cohort of the individual plan member is all that is relevant.

We include the longevity fan chart in figure 2 because it gives a more intuitive un-
derstanding of mortality uncertainty, giving a clear indication that the our model allows
for considerable variation in future mortality rates. If we compare the graphs on the left
of figure 2 with those on the right, we see that our model represents mortality dynamics
broadly similar to those represented by the Lee-Carter model. The observed differences
at advanced ages are a result of estimation difficulties innate to mortality rate estimation.
The Lee-Carter model attempts to fit the sparse data subset of advanced age death rates
whereas our model effectively extrapolates from the data set excluding these rates. There
is currently no consensus as to what constitutes best practice in this regard. It is reason-
able to posit, therefore, that we have identified a continuous-time stochastic mortality
model that is both analytically tractable and representative of true mortality dynamics,
in so far as they can be modelled at present. This will enable us to model longevity risk
realistically in the pension fund asset allocation problem addressed in the next section.

5 The Impact of Longevity Risk on the Replacement

Ratio

In this section we look to analyse the impact of systematic longevity risk on the replace-
ment ratio delivered by an optimal dynamic pension fund asset allocation strategy. We
will consider the pension funding problem of an individual DC plan member who joins
the plan at age 25, retires at age 65 and uses the total accumulated pension fund wealth
at that time to purchase an annuity. The plan member is assumed to contribute a fixed
proportion of his salary to the pension fund throughout his working life.6 We will not
consider the plan member’s time of death since the purchase of the annuity renders the
consideration financially immaterial.

As discussed in section 2, when dealing with pension plans, utility is derived from
the replacement ratio as opposed to a nominal cash amount; therefore, when looking
to determine the optimal asset allocation underlying the design of the proposed plan
member oriented pension plan design, it is necessary to account for this. We therefore
look to identify the asset allocation strategy which maximises

U

(
W (T )

Y (T )a(T, ζ(T ))

)
(15)

6We will consider the plan member to be male so as to be consistent with the mortality estimates of
section 4
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where T is the time of retirement; U(·) is the plan member’s utility function incorpo-
rating his individual level of risk aversion; W (T ) is the terminal nominal wealth of the
pension fund; Y (T ) is the plan member’s salary immediately prior to retirement; and
a(T, ζ(T )) is the price of an annuity at retirement that pays one unit of wealth per year
for the remainder of the plan member’s life. We notice here that the price of the annuity
is dependent on the evolution of the mortality improvement state variable ζ(t) .

The price of the annuity at retirement is given by

a(T, ζ(T )) =
∞∑
τ=T

e−r(τ−T )F (T, τ, ζ(T )) =
∞∑
τ=T

e−r(τ−T )eα(T,τ)−β(T,τ)λ0(T )ζ(T )

We will let the annuity rate prior to retirement, t < T , be given by

a(t, ζ(t)) = e−r(T−t)
∞∑
τ=T

e−r(τ−T )F (t, τ, ζ(t)) (16)

This is the fair price of the corresponding deferred annuity; that is, the price at which
the pension plan member could exchange the accumulated pension fund wealth at time
t < T for a stream of annual payments commencing at retirement. This price factors
in the possibility that the plan member could die before retirement, which might seem
at first to contradict our assumption that the plan member’s time of death is irrelevant.
However this assumption relates to the plan member only, which is reasonable since the
entire notion of retirement planning is built on the premise that there will actually be a
retirement period. A life company calculating the fair value of a deferred annuity on the
other hand, would factor in the possibility of premature death; (16) merely reflects this
consideration. Applying Itō’s lemma we get

da(t, ζ) = a(t, ζ)
[(
r + λ0(t)ζ

)
dt+ σζ

√
ζψ(t, ζ)dZζ(t)

]
(17)

where we have defined ψ(t, ζ) =
1

a(t, ζ)

∂

∂ζ
a(t, ζ) as the semielasticity of the annuity

price with respect to the mortality improvement factor.
A significant advantage gained from working with the stochastic mortality model

derived in the previous section is that we have a analytical expression for the transition
densities of the mortality improvement process (by virtue of it following a CIR process).
Using this analytical expression we can derive a corresponding analytical expression for
the conditional expectation of the annuity price at retirement (see appendix B).

E
[
a
(
T, ζ(T )

)
| I(t)

]
=
∞∑
τ=T

e−r(τ−T )+α(T,τ)

1 +
σ2
ζ

2δ
(1− e−δ(T−t))λ0(T )β(T, τ)

· exp
{ −ζ(t)e−δ(T−t)λ0(T )β(T, τ)

1 +
σ2
ζ

2δ
(1− e−δ(T−t))λ0(T )β(T, τ)

}
(18)
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We will now consider the optimal asset allocation strategy. We will first consider the
incomplete market case; that is, the case where the longevity risk cannot be hedged. We
will then compare this to the complete market case so as to gain an understanding of the
value of the longevity hedge.

5.1 The incomplete market case

We allow the pension fund to invest in two assets, a risk-free asset, or bond, B, and a
risky asset, or stock, S; and the plan member seeks to maximise his expected terminal
utility (utility at retirement) by varying the proportions of pension fund wealth invested
in each according to the optimal asset allocation policy. The growth of the risk free asset
is assumed to be deterministic i.e. B(t) = B(0)exp(rt) and the price of the risky asset is
assumed to satisfy

dS(t) = S(t)
[
(r + ξσS)dt+ σSdZS(t)

]
(19)

where ZS(t) is a standard Brownian motion independent of Zζ(t), and ξσS is the risk
premium on the asset i.e. ξ is the market price of risk.

Now, in order to specify the dynamics of the replacement ratio we must define the
salary dynamics, and determine the wealth dynamics. We assume that all uncertainty
associated with plan member’s future salary is driven by ZS(t), and therefore can be
hedged through an appropriate investment in the risky asset. The plan member’s salary,
Y (t) is governed by

dY (t) = Y (t)
[
(r + µ)dt+ σY dZS(t)

]
(20)

where σY allows for the possible correlation between salary and equity returns. If we
denote the proportion of pension fund wealth invested in the generic risky asset at time
t by p(t) the wealth process is given by

dW (t) = W (t)
[(
r + p(t)ξσS

)
dt+ p(t)σζSdZS(t)

]
+ πY (t)dt

We can now define the replacement ratio, X(t):

X(t, ζ) =
W (t)

Y (t)a(t, ζ(t))
(21)

We find, again using Itō’s lemma (multiple times),

dX(t, ζ) =
π

a(t, ζ)
dt+X(t)

[(
−
(
r + λ0(t)ζ + µ

)
+ σ2

Y + p(t)σS(ξ − σY )

+ ψ2(t, ζ)σ2
ζζ
)

dt− ψ(t, ζ)σζ
√
ζdZζ(t) + (p(t)σS − σY )dZS(t)

]
(22)
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We define the value function as:

V (t,X, ζ) = sup
p∈Q

EP

[
U
(
X(T, ζ(T ))

)∣∣∣G(t)
]

(23)

where EP is the expectation with respect to the real world probability measure P , G(t)
is the filtration containing all information up to time t and Q is the set of all admissible
asset allocation strategies.

The Hamilton-Jacobi-Bellman (HJB) equation of optimality is therefore

sup
q

[
Vt+

(
π

a(t, ζ)
+ x
(
−
(
r + λ0(t)ζ + µ

)
+ σ2

Y + p(t)σS(ξ − σY ) + ψ2(t, ζ)σ2
ζζ
))

Vx

+
(
θ − δζ

)
Vζ +

1

2
x2
(

(p(t)σS − σY )2 − ψ2(t, ζ)σ2
ζλ0(t)ζ

)
Vxx

− ψ(t, ζ)σ2
ζλ0(t)ζVxζ +

1

2
σ2
ζλ

2
0(t)ζVζζ

]
= 0 (24)

subject to the boundary condition V (T,X(T ), ζ) = U
(
X(T )

)
.7

If we solve the first order condition for p(t), and if we denote by p∗(t) the resulting
optimal asset allocation strategy, we find that

p∗(t) =
σY
σS
− (ξ − σY )

σS

Vx
xVxx

(25)

Inserting this expression into the HJB equation yields the following PDE:

Vt + Vx

( π

a(t, ζ)
+ x
(
− (r + λ0(t)ζ + µ

)
+ ξσY + ψ2(t, ζ)σ2

ζζ
))

+ Vζ
(
θ − δζ

)
− 1

2

V 2
x

Vxx
(ξ − σY )2 +

1

2
x2Vxxψ

2(t, ζ)σ2
ζζ − xVxζψ(t, ζ)σ2

ζζ +
1

2
Vζζσ

2
ζζ = 0 (26)

Following Cairns et al. (2006a), we first consider the case where π = 0, i.e. the case
where there is a single contribution at time zero. Furthermore, we will restrict ourselves
to the case of power utility, i.e.

U
(
X(t)

)
=


1

γ

(
X(t)

)γ
γ < 1, γ 6= 0

log
(
X(t)

)
γ = 0

7Here Vt =
∂

∂t
V (t, x, ζ); Vx =

∂

∂x
V (t, x, ζ); Vxx =

∂2

∂x2
V (t, x, ζ); Vζ =

∂

∂ζ
V (t, x, ζ); Vζζ =

∂2

∂ζ2
V (t, x, ζ); Vxζ =

∂

∂ζ

( ∂
∂x
V (t, x, ζ)

)
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(where 1− γ is the coefficient of relative risk aversion).
In choosing to work with power utility we have that the value function is homogeneous

in the replacement ratio and therefore takes the form

V (t, x, ζ) =
1

γ
g(t, ζ)xγ (27)

with g(T, λ) = 1 for all λ. This leads us to the following proposition.

Proposition 2. The value function takes the form

V (t, x, ζ) =
1

γ
xγexp

{
γ
(
− µ+ ξσY +

1

2

1

(1− γ)
(ξ − σY )2

)(
T − t

)}
· a
(
t, ζ
)γ

EP

[
a
(
t, ζ(T )

)−γ∣∣∣G(t)
]

(28)

Proof. See Appendix C.

Now, by extension of theorem 3.4.1 of Cairns et al. (2006a) we find that, for the case
where π > 0,

V (t, x, ζ) =
1

γ

(
x+

πf(t)

a
(
t, ζ
))γexp

{
γ
(
− µ+ ξσY +

1

2

1

(1− γ)
(ξ − σY )2

)(
T − t

)}
· a
(
t, ζ
)γ

EP

[
a
(
T, ζ(T )

)−γ∣∣∣G(t)
]

(29)

where

πf(t) =
1

Y (t)
EQ

[∫ T

t

e−r(s−t)πY (s)ds
∣∣∣F(t)

]
= π

exp
[
(µY − ξσY1)(T − t)

]
− 1

µY − ξσY
(30)

F(t) here is the filtration generated by ZS(τ) up to time t and Q is the unique risk
neutral measure. πY (t)f(t) is the market price at time t for the premiums payable
between t and T .

From (25) we find that

p∗(t) =
σY
σS

+
(ξ − σY )

σS

1

1− γ

(
1 +

πY (t)f(t)

W (t)

)
(31)

This is precisely the same optimal asset allocation we would find in the case where
wealth is measured solely in terms of salary. Thus, background longevity risk does not
impact the asset allocation in our framework when the market is incomplete. It does
however impact the realised replacement ratio as we would expect.
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5.2 The complete market case

5.2.1 The mortality-linked security

In order to gauge the impact of the longevity risk we introduce a synthetic mortality-
linked asset, L(t, ζ), that permits a perfect longevity hedge, and look to determine the
relative demand for this asset. We define L(t, ζ) as follows:

L(t, ζ(t)) =
∞∑
τ=t

e−r(τ−t)M(t, τ, ζ(t)) (32)

where M(t, τ, ζ(t)) is as defined in (5), with

dM(t, T, ζ(t)) = −σζλ0(t)
√
ζ(t)β(t, T )M(t, T, ζ(t))dZζ(t) (33)

This asset can be viewed as a portfolio of ‘longevity bonds’ with maturities matching
the expected annuity payments. A longevity bond is generally defined as a bond whose
payout is proportional to the number of individuals alive at maturity in some underlying
population of individuals. We assume here that the payout from one of the longevity
bonds making up the portfolio L(t, λ), is equal to the “realised” survival probability.
This is analogous to the number of individuals surviving from a given population, in that
the survival probability dynamics are driven by the number of people surviving from one
period to the next relative to the number predicted; however the population driving the
mortality rate dynamics must necessarily be much larger than that underlying any given
longevity bond, covering all age cohorts. We have omitted a longevity risk premium due
to the computational advantages gained by doing so. These computational advantages
outweigh any potential informational value the inclusion of a risk premium would add
considering the comparative nature of our analysis, and the role of the longevity bond as
solely an efficient hedging tool.

Applying Itō’s lemma to (32), we get

dL(t, ζ) = L(t, ζ)
[
rdt+ σζ

√
ζψ(t, ζ(t))dZζ(t)

]
(34)

It is clear that an investment in the asset L(t, λ) is sufficient to provide a complete
hedge against the longevity risk exposure induced by the use of the replacement ratio as
the measure of pension fund wealth.

5.2.2 The optimal longevity hedging strategy

If we denote again the proportion of pension fund wealth invested in the risky asset
S(t) at time t by p(t), and that invested in the asset L(t, λ) by q(t) (and therefore the
proportion invested in the risk-free asset by 1− p(t)− q(t)), the wealth process is given
by

dW (t) = W (t)
[(
r + p(t)ξσS

)
dt+ q(t)ψ(t, ζ(t)σζ

√
ζdZζ(t) + p(t)σζSdZS(t)

]
+ πY (t)dt
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The replacement ratio, (21), therefore follows:

dX(t, ζ) =
π

a(t, ζ)
dt+X(t)

[(
−
(
r + λ0(t)ζ + µ

)
+ σ2

Y + p(t)σS(ξ − σY )− (35)(
q(t)− 1

)
ψ2(t, ζ)σ2

ζζ
)

dt+
(
q(t)− 1

)
ψ(t, ζ)σζ

√
ζdZζ(t) + (p(t)σS − σY )dZS(t)

]
and the HJB equation of optimality is

supq

[
Vt +

(
π

a(t, ζ)
+ x
(
−
(
r + λ0(t)ζ + µ

)
+ σ2

Y + p(t)σS(ξ − σY )

−
(
q(t)− 1

)
ψ2(t, ζ)σ2

ζζ
))

Vx +
(
θ − δζ

)
Vζ +

1

2
x2
(

(p(t)σS − σY )2 (36)

+
(
q(t)− 1

)
ψ2(t, ζ)σ2

ζζ
)
Vxx +

((
q(t)− 1

)
ψ(t, ζ)σ2

ζλ0(t)ζ
)
Vxζ +

1

2
σ2
ζλ

2
0(t)ζVζζ

]
= 0

If we now solve the first order conditions for p(t) and q(t), and if we denote by p∗(t)
and q∗(t) the resulting optimal strategies, we find that

p∗(t) =
σY
σS
− (ξ − σY )

σS

Vx
xVxx

(37)

q∗(t, ζ) = 1− Vx
xVxx

− 1

ψ(t, ζ)

Vxζ
xVxx

(38)

Inserting these two expressions into the HJB equation yields the following PDE:

Vt + Vx

( π

a(t, ζ)
+ x
(
− (r + λ0(t)ζ + µ

)
+ ξσY

))
+ Vζ

(
θ − δζ

)
− 1

2

V 2
x

Vxx

(
(ξ − σY )2

+ ψ2(t, ζ)σ2
ζζ
)

+
VxVxζ
Vxx

ψ(t, ζ)σ2
ζζ −

1

2

V 2
xζ

Vxx
σ2
ζζ +

1

2
Vζζσ

2
ζζ = 0

If we consider, again, first the case where π = 0, and to the case of power utility, we
can express the value function as:

V (t, x, ζ) =
1

γ
xγg(t, ζ)1−γ (39)

with g(T, ζ) = 1 for all ζ. Now, following the approach presented for the incomplete
market case, in the proof of proposition 2 (appendix C), it can be shown that the value
function, for the general case (π ≥ 0), takes the form

V (t, x, ζ) =
1

γ

(
x+

πf(t)

a
(
t, ζ
))γexp

{
γ
(
− µ+ ξσY +

1

2

1

(1− γ)
(ξ − σY )2

)(
T − t

)}
· a
(
t, ζ
)γ

EP

[
a
(
T, ζ(T )

)− γ
1−γ
∣∣∣G(t)

]1−γ
(40)
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From (37) and (38) we find that

p∗(t) =
σY
σS

+
(ξ − σY )

σS

1

1− γ

(
1 +

πY (t)f(t)

W (t)

)
(41)

q∗(t, ζ) =

1 +
πY (t)f(t)

W (t)

ψ(t, ζ)

∂

∂ζ
EP

[
a
(
T, ζ(T )

)− γ
1−γ
∣∣∣G(t)

]
EP

[
a
(
T, ζ(T )

)− γ
1−γ
∣∣∣G(t)

] (42)

Since we know the probability density function for ζ(T ) (conditional on information
at time t < T ) it is possible to calculate (using numerical integration techniques) q∗(t, ζ)

for given values of t < T and ζ. For t = T we have that q∗(T, ζ) = − γ

1− γ
for all ζ.

5.2.3 The value of the longevity hedge

The optimal asset allocation strategies p∗(t) and q∗(t) in (41) and (42) are given as a
proportion of the total nominal pension fund wealth W (t). They therefore require a
short position in the risk-free asset constituting a loan against future contributions to the
fund.

Insert figure 3 here

Figure 3 shows the evolution of p∗(t) (red) and q∗(t) (blue) over the 40 year life of
the DC fund considered for 1000 simulated paths, conditional on the risky asset following
a single, randomly selected, path. The parameter values used here, and throughout the
remainder of the paper (except where stated otherwise) were chosen as π = 0.1, ξ = 0.2,
µ = 0, σS = 0.2 and σY = 0.05, in line with typical values used throughout the literature.
We can see that initially both proportions are significantly above one, indicating the
large initial short position in the risk-free asset. The size of this short position reduces
quickly over time as contributions are received and used to pay back the implicit initial
borrowings, while the nominal value of the fund assets increases.

We also see that there is a similar degree of variation across the paths for both the
p∗(t) and q∗(t) strategies. This is, perhaps, counterintuitive, on the basis that it is
solely the mortality rate that differs across the paths. We might expect a much greater
degree of variation across the q∗(t) paths, since q∗(t) is the optimal longevity risk hedging
strategy. However, both strategies are dependent on the ratio of the present value of
future contributions to the nominal pension fund wealth, and it is the variation due to
the effect of the varying mortality rate on this ratio that is driving the observed behaviour.

It is difficult to gauge the effect of the mortality rate variation on the demand for
the longevity risk hedge from figure 3 due to the overwhelming influence of the value of
future contributions over the early stages of the plan. If we, however define the augmented
pension fund wealth as

W̃ (t) = W (t) + Y (t)πf(t) (43)

and express the asset allocation strategies as a proportion of W̃ (t), i.e. we treat the
future contributions as part of the current pension fund wealth, we can observe far more
distinct behaviour.
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Insert figure 4 here

Figure 4 shows the two strategies expressed in this way for 3 different degrees of
relative risk aversion: 3 (green), 6 (red) and 9 (blue). We can see that the risky asset
allocations (dashed lines) are constant across both time and path; that is, the proportion
of augmented wealth allocated to the risky asset does not change deterministically over
time or in response to shocks to mortality. The allocation to the longevity bond portfolio
is both time varying and responds to mortality shocks, as we would expect. The upward
sloping time variation is attributable to the asymmetry between the individual longevity
bond prices, which implicitly factor in the possibility that the plan member could die prior
to retirement, and the annuity payments, which are conditional on survival to retirement.

As we would expect, the more risk averse investor invests more, on average, in the
longevity bond portfolio, and less in the risky asset. The significant variation across the
different paths shows that there is at least some benefit to adopting a dynamic hedging
strategy, however the extent of this benefit cannot be made clear by merely observing the
asset allocation strategies themselves. In order to gauge this extent we need to consider
the value derived from the hedge; that is, the impact the addition of the hedging asset
has on the value function of the problem, i.e. the plan member’s expected utility at
retirement.

Insert figure 5 here

Figure 5 shows 1000 simulated value function paths (again conditional on single,
randomly selected, risky asset path) for both the incomplete market case (blue) and the
complete market case (red), for 4 different levels of relative risk aversion: 1 (top left)8, 3
(top right), 6 (bottom left) and 9 (bottom right).

For an individual with a level of relative risk aversion equal to one the cases are very
similar; that is, as the plan member is near risk neutral he does not place much value
on the longevity risk hedge and therefore follows much the same strategy as he would if
the hedge were unavailable. As the level of risk aversion increases, however, the relative
risk associated with the incomplete market case increases, becoming quite stark for the
higher levels. There is no observable difference between the expected terminal utility at
time zero, at any level of risk aversion. This stems from the mortality linked asset’s role
as purely a hedging instrument.

As we have discussed in section 3, the proposed pension plan design calls for the
contribution rate to be determined as an exogenous variable in order to accommodate
some of the behavioural biases typical of pension plan members, thereby making the plan
more attractive. The responsibility of the pension plan, with regard to the contribution
rate decision, is to provide reliable information concerning the replacement ratio the plan
member is likely to receive given a particular contribution rate. How the plan member
uses this information to determine the contribution rate most appropriate to them is left
open. It is clear that if the plan member were to choose the contribution rate resulting
in a desired expected terminal utility, the availability of the longevity hedge would not
affect this decision. There is, however, a vast set of criteria by which the plan member
could make this decision, and on which the longevity risk hedge may have an effect.

8For ease of calculation we in fact set the coefficient of relative risk aversion here to be .99

22



When communicating the pension fund wealth information to the plan member it
could be confusing to speak in terms of a theoretical utility derived from this wealth.
In the context of the proposed pension plan design, the utility function is a convenient
quantitative tool, used as a means of accounting for varying risk preferences in the dy-
namic asset allocation model; it should be of little concern to the plan member. We will
therefore, from now on, speak solely in terms of the replacement ratio, which offers an
intuitive understanding of pension fund wealth, thereby facilitating the decision making
process.

Insert figure 6 here

The probability distribution of the replacement ratio, if known, would present most,
if not all, of the information relevant to the plan member; principally, the probability of
meeting, failing to meet, or surpassing some desired, or permissible, replacement ratio.
Figure 6 presents probability densities for a selection of key parameter values, estimated
using Monte Carlo simulation over 30,000 paths. The parameter values varied are the
market price of risk coefficient, ξ, and the coefficient of relative risk aversion, γ; two pa-
rameters that significantly affect the proportion of (augmented) pension wealth allocated
to the risky asset, S. The purpose of this was to highlight the relative effects of longevity
risk and market risk.

For both a relatively low level of risk aversion and relatively high market price of
risk (top left), we do not observe any benefit (by way of a reduction in risk) from the
longevity hedge i.e. the histogram representing the density estimate of complete market
case (blue) eclipses that representing that of the incomplete market case. This is due
primarily to the fact that optimal allocation to the risky asset is high for these parameter
values, and therefore the proportion of total portfolio variance attributable to the risky
asset far outweighs that attributable to the mortality linked security.

If, however, we consider a relatively high level of risk aversion and a relatively low
market price of risk (bottom right), we observe a considerable benefit. Here, with a low
allocation to the risky asset, the principal driver behind the replacement ratio variance
is the annuity rate, and therefore the effect of the hedge is more pronounced. The hedge
effectiveness can be seen to be increasing from the density at the top left to that at the
bottom right in line with a decreasing risky asset allocation.

The value derived from the longevity risk hedge evidently depends on the individual
plan member’s attitude towards risk. It is likely that an individual classified as risk averse
(by whatever means) for the purpose of determining the asset allocation strategy would
likewise exhibit risk averse behaviour when deciding on an appropriate contribution rate.
We will, for illustrative purposes, assume that the plan member chooses the contribution
rate that ensures there is a certain probability the replacement rate will be above some
minimal permissible value; or, in other words, the contribution rate that gives a desired
value-at-risk (VaR). We can then define the value of the longevity hedge (to the individual
plan member) as the increase in contribution rate required to ensure that this VaR is same
in both the complete and incomplete markets.

Insert table 2 here

Table 2 presents these required contributions for 3 different confidence levels (90%,
95% and 99%), based on estimated probability densities analogous to those in figure 6,
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for a selection of different relative risk aversion and market price of risk parameter values.
The required increases are modest across all scenarios, ranging from no increase at the
90% confidence level for the scenario corresponding to the largest risky asset allocation,
to an increase of 5.22% (i.e. from 10% to 10.522%) at the 99% confidence level for the
scenario corresponding to the least risky asset allocation. The increases may be modest,
but over a 40 year period even modest increases in the contribution rate can have a
significant impact on the nominal fund wealth, i.e. the cost of trying to make up the
difference at retirement could be steep; a harsh lesson learned by many DB plans in
recent times.

6 Conclusions

Over the past decade or so the global pensions markets have experienced a shift from a
defined benefit (DB) plan dominated environment to one in which defined contribution
(DC) plans are playing an ever-increasing role. This prevailing trend has brought with it
a demand for a change in the way in which DC plans are designed. We have discussed a
design proposal that looks to, not only retain the plan member oriented principles of the
DB plan but correct for many of the plan shortcomings that saw so many DB plans fail
so dramatically.

This design hinges on the development of a robust dynamic asset allocation strat-
egy that can react optimally to changes in key underlying state variables. It was the
failure to anticipate, and react appropriately to, changing market conditions, slowing
economies and age demographic shifts that resulted in the DB plan failures. We have
argued that these risks are not specific to DB plans, and must be accounted for in any
DC design going froward. We have focused primarily on the risk that age demographics
will change, or particularly, the risk that populations will age due to an average increase
in life expectancy.

We refer to the risk that average life expectancy will increase as systematic longevity
risk. If we re-design defined contribution pensions so that they address the problem of
funding a desired level of retirement income, as would be desirable by most individuals in
the market for pensions, there is no escaping the problem of systematic longevity risk. We
have seen that longevity risk manifests itself in the proposed pension plan design problem
through the annuity rate; that is, longevity risk in the pension plan design problem is
the risk that the expected annuity rate at retirement will decrease over time as a result
of corresponding unexpected decreases in mortality rates.

We worked within a continuous-time dynamic programming framework to identify
the optimal dynamic asset allocation strategy. We took as the objective function of
the optimization problem the expected utility derived from the replacement ratio at
retirement. We identified an affine stochastic mortality model that remained analytically
tractable within the continuous time stochastic dynamic programming framework. The
model combined the renowned Gompertz law for mortality with the widely used CIR term
structure model, which we applied to the mortality improvements. This combination
ensured that the model parameters could be easily understood in terms of real world
phenomena. The use of the Gompertz law enabled us to find closed form solutions to the
resulting Ricatti equations, giving us a functional form for the survival probabilities. This
allows for the efficient estimation of future survival probabilities and life expectancies,
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which in turn can be used to value annuities and other mortality contingent claims.
We provided a straightforward scheme by which to calibrate the model to historical
death rates and showed that, when calibrated to US data, the model captures real world
mortality dynamics, as compared with the most popular discrete time model used in
practice.

In order to gauge the impact of longevity risk we introduced, into the asset mix of the
portfolio choice problem, a synthetic longevity-linked security, of a similar type to what
has already been proposed in the literature. We determined the relative demand for this
asset, and the value added through the introduction of this asset in terms of a utility
gain. We found that for sufficiently risk averse plan members the value added by way of
a reduction in conditional volatility is substantial, however these effects can be drowned
out if the proportion of pension fund wealth allocated to risky assets is large. We showed
that, if the individual plan member considered was to choose his contribution rate such
that the probability of the fund falling below some minimal permissible value was kept
to a given level, the benefit in terms of saved contributions derived from the availability
of an efficient longevity hedge could be significant.
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Appendix A

We first find that
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It can be shown (see Polyanin and Zaitsev, 2003) that this ODE has the general solution:
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where Jν and Yν are the Bessel functions of first and second kind respectively, ν = δb,
and C1(T ) and C2(T ) are arbitrary functions of T . Now
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We therefore have
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In order to find the particular solution we must find the functions C1(T ) and C2(T ) that
satisfy β(T, T ) = 0 and α(T, T ) = 0.
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For ease of notation, if we let
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Since z(t) is complex for positive b values it is more appropriate to write α(t, T ) and
β(t, T ) in terms of the modified Bessel function Iν(z), where
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Appendix B

ζ(T ), conditional on information at time t < T , has the following probability density
function (see Cox et al.,1985):
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where Iν(z) here is again the modified Bessel function of the first kind. Recall, in
section 4, in order to minimise the rate of mean reversion we set θ = σ2

ζ/2. If we do the
same here we see the density simplifies to
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Appendix C

Substituting V (t, x, ζ) =
1

γ
g(t, ζ)xγ into (16) we find that (following the notation used

for V (t, x, λ)) the PDE reduces to

gt +
(
θ − δζ − γψσ2

ζζ
)
gζ +

1

2
σ2
ζζgζζ (64)

+ γ
((
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1

2

1
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1

2
(γ + 1)ψ2σ2

ζζ
)
g = 0

The solution to this PDE has the following Feynman-Kac representation
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with

dζ(t) =
(
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ζζ(t)
)

dt+ σζ
√
ζ(t)dẐ1(t) (67)

and where the measure is changed to P̂ , defined by the density
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The process Ẑλ(t) is a brownian motion under P̂ and is determined by

Ẑλ(t) = Z(t) + γ

∫ t

0

ψσζ
√
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dP̂
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t

is the Radon-Nikodým derivative of P̂ with respect to P , so
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We also have that
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Cancelling terms and taking out what is known we get

g(t, ζ) = exp
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Therefore
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Historical Mortality Improvements
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Figure 1: This figure presents the historical mortality improvements based on a number
of different measures: the individual age groups (blue lines), an individual aged 25 at
time 0, 26 at time 1, etc. (red line), and our proxy measure - the area under the base
mortality curve (green line). It is clear that the variance across the age groups is too
severe to consider any one group as representative of the whole, and the jaggedness of
the line corresponding to the individual, presents a degree of volatility not in keeping
with the typical age grouping, as we would expect. The proxy measure however finds a
balance between these two extremes.
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Mortality Uncertainty
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Figure 2: This figure presents survivor and longevity fan charts estimated using the 2
models considered. Those on the left are estimated using our model, based on the CIR
mortality improvements, and those on the right are estimated using the Lee-Carter model.
Survivor and longevity fan charts are two alternative ways for representing graphically the
uncertainty associated with future mortality rates. The survivor fan chart (top) shows
the probability that an man aged 65 will survive to any given age, for 1000 different
simulated paths of the underlying mortality process. The longevity fan chart (bottom)
shows how the life expectancy of men aged 65 evolves over a 40 year period, again for
1000 simulated paths of the mortality process.
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Dynamic Asset Allocation − Total Wealth
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Figure 3: This figure shows the evolution of the optimal dynamic asset allocation for the
risky asset (red) and mortality-linked security (blue), over the 40 year life of the DC fund
considered, for 1000 simulated paths conditional on the risky asset following a single,
randomly selected, path. We can see that initially both proportions are significantly
above one, indicating the large initial short position in the risk-free asset. This size of
this short position reduces quickly over time as contributions are received and used to
pay back the initial borrowings, while the nominal value of the fund assets increases.
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Dynamic Asset Allocation − Augmented Wealth
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Figure 4: This figure shows the two optimal asset allocation strategies expressed in terms
of the augmented pension fund wealth for 3 different degrees of relative risk aversion: 3
(green), 6 (red) and 9 (blue). We can see that the risky asset allocations (dashed lines) are
constant across both time and path; that is, the proportion of augmented wealth allocated
to the risky asset does not change deterministically over time or in response to shocks
to mortality. The allocation to the longevity bond portfolio is both time varying and
responds to mortality shocks, as we would expect. The upward sloping time variation
is attributable to the asymmetry between the individual longevity bond prices, which
implicitly factor in the possibility that the plan member could die prior to retirement,
and the annuity payments, which are conditional on survival to retirement.
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Figure 5: This figure presents 1000 simulated value function paths for both the in-
complete market case (blue) and the complete market case (red),for 4 different levels of
relative risk aversion: 1 (top left), 3 (top right), 6 (bottom left) and 9 (bottom right).
For an individual with a coefficient of relative risk aversion equal to 1 the cases are very
similar; that is, as the plan member is near risk neutral he does not place much value
on the longevity risk hedge and therefore follows much the same strategy as he would if
the hedge were unavailable. As the level of risk aversion increases, however, the relative
risk associated with the incomplete market case increases, becoming quite stark for the
higher levels.
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Figure 6: This figure shows the estimated replacement ratio probability densities for a
selection of key parameter values, estimated using Monte Carlo simulation over 30,000
paths. The parameter values varied are the market price of risk coefficient, ξ, and the
coefficient of relative risk aversion, γ; two parameters that significantly affect the propor-
tion of (augmented) pension wealth allocated to the risky asset, S. For both a relatively
low level of risk aversion and relatively high market price of risk (top left), we do not
observe any benefit (by way of a reduction in risk) from the longevity hedge i.e. the
histogram representing the density estimate of complete market case (blue) eclipses that
representing that of the incomplete market case. This is due primarily to the fact that
optimal allocation to the risky asset is high for these parameter values, and therefore the
proportion of total portfolio variance attributable to the risky asset far outweighs that
attributable to the mortality linked security. If, however, we consider a relatively high
level of risk aversion and a relatively low market price of risk (bottom right), we observe
a considerable benefit. Here, with a low allocation to the risky asset, the principal driver
behind the replacement ratio variance is the annuity rate, and therefore the effect of the
hedge is more pronounced. The hedge effectiveness can be seen to be increasing from the
density at the top left to that at the bottom right in line with a decreasing risky asset
allocation.
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Table 1: Parameter estimates

λo(x, t) ζ(x, t)
Parameter b m θ δ σζ
Estimate 10.05559 84.5957 0.000194 0.008367 0.019674

This table shows the maximum likelihood parameter estimates
for the CIR mortality improvement process, along with the least-
squares parameter estimates for the base mortality curve.
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Table 2: Increase in contributions required to offset longevity risk

RRA
Mkt. Price
of Risk

Asset Allocation Rep. Ratio StDev Cont. Increase
S L Hedge No Hedge 90% 95% 99%

0.1 0.333 0.041 0.042 0.58% 0.62% 0.80%
3 0.15 0.417 0.667 0.095 0.096 0.12% 0.41% 0.52%

0.2 0.500 0.177 0.178 0.00% 0.26% 0.76%

0.1 0.292 0.020 0.023 1.09% 1.35% 1.83%
6 0.15 0.333 0.833 0.044 0.046 0.61% 0.67% 0.86%

0.2 0.375 0.075 0.077 0.42% 0.49% 0.68%

0.1 0.271 0.010 0.015 1.88% 2.33% 3.22%
12 0.15 0.292 0.917 0.021 0.025 1.10% 1.38% 1.81%

0.2 0.313 0.035 0.038 0.83% 0.91% 1.19%

0.1 0.262 0.006 0.013 2.49% 3.19% 4.51%
21 0.15 0.274 0.952 0.012 0.017 1.73% 2.16% 2.93%

0.2 0.286 0.019 0.024 1.30% 1.61% 2.07%

0.1 0.258 0.004 0.012 2.85% 3.66% 5.22%
30 0.15 0.267 0.967 0.008 0.015 2.14% 2.70% 3.77%

0.2 0.275 0.013 0.019 1.67% 2.09% 2.81%

This table shows the required contributions for 3 different confidence levels (90%, 95%
and 99%), based on estimated probability densities analogous to those in figure 6, for a
selection of different relative risk aversion and market price of risk parameter values. The
required increases are modest across all scenarios, ranging from no increase at the 90%
confidence level for the scenario corresponding to the largest risky asset allocation, to an
increase of 5.22% (i.e. from 10% to 10.522%) at the 99% confidence level for the scenario
corresponding to the least risky asset allocation. The proportion of pension fund wealth
invested in the risky asset, S, and the mortality-linked asset, L, immediately prior to
retirement, are shown in the third and fourth columns respectively so as to give an idea
of the relative increases and decreases across the different scenarios.
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